Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hot-electron drift velocity and hot-phonon decay in AlInN/AlN/GaN

Identifieur interne : 002D12 ( Main/Repository ); précédent : 002D11; suivant : 002D13

Hot-electron drift velocity and hot-phonon decay in AlInN/AlN/GaN

Auteurs : RBID : Pascal:11-0238920

Descripteurs français

English descriptors

Abstract

A nanosecond-pulsed current-voltage technique was applied to study hot-electron transport along the two-dimensional electron gas channel confined at a nominally undoped AlInN/AlN/GaN heterointerface. Hot-electron drift velocity was deduced under the assumptions of uniform longitudinal electric field and field-independent electron sheet density. At a fixed electric field strength, a resonance-type non-monotonous dependence of the velocity on the electron density was found in the investigated range from I to 1.6 × 1013 cm-2. When the electric field increased from 20 kV/cm to 80 kV/cm, the peak velocity increased from ˜1.1 to 2.3 × 107 cm/s, and the position of the resonance shifted from ˜1.1 × 1013 cm-2 to ˜1.2 × 1013 cm-2, respectively. The resonance position correlates with that for the fastest decay of hot phonons known from independent experiment.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0238920

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Hot-electron drift velocity and hot-phonon decay in AlInN/AlN/GaN</title>
<author>
<name sortKey="Ardaravicius, L" uniqKey="Ardaravicius L">L. Ardaravicius</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Semiconductor Physics Institute of Center for Physical Science and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>01108 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liberis, J" uniqKey="Liberis J">J. Liberis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Semiconductor Physics Institute of Center for Physical Science and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>01108 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kiprijanovic, O" uniqKey="Kiprijanovic O">O. Kiprijanovic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Semiconductor Physics Institute of Center for Physical Science and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>01108 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matulionis, A" uniqKey="Matulionis A">A. Matulionis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Semiconductor Physics Institute of Center for Physical Science and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>01108 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M. Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morkoc, H" uniqKey="Morkoc H">H. Morkoc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0238920</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0238920 INIST</idno>
<idno type="RBID">Pascal:11-0238920</idno>
<idno type="wicri:Area/Main/Corpus">003129</idno>
<idno type="wicri:Area/Main/Repository">002D12</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6254</idno>
<title level="j" type="abbreviated">Phys. status solidi, Rapid res. letters : (Print)</title>
<title level="j" type="main">Physica status solidi. Rapid research letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium Indium Nitrides Mixed</term>
<term>Aluminium nitride</term>
<term>Drift mobility</term>
<term>Drift velocity</term>
<term>Electric field effects</term>
<term>Electron mobility</term>
<term>Gallium nitride</term>
<term>Heterostructures</term>
<term>High field</term>
<term>Hot electrons</term>
<term>IV characteristic</term>
<term>Pulse current</term>
<term>Semiconductor materials</term>
<term>Two-dimensional electron gas</term>
<term>Uniform field</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electron chaud</term>
<term>Mobilité dérive</term>
<term>Vitesse dérive</term>
<term>Courant impulsionnel</term>
<term>Caractéristique courant tension</term>
<term>Mobilité électron</term>
<term>Champ uniforme</term>
<term>Effet champ électrique</term>
<term>Champ intense</term>
<term>Aluminium Indium Nitrure Mixte</term>
<term>Nitrure d'aluminium</term>
<term>Nitrure de gallium</term>
<term>Gaz électron 2 dimensions</term>
<term>Hétérostructure</term>
<term>Semiconducteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A nanosecond-pulsed current-voltage technique was applied to study hot-electron transport along the two-dimensional electron gas channel confined at a nominally undoped AlInN/AlN/GaN heterointerface. Hot-electron drift velocity was deduced under the assumptions of uniform longitudinal electric field and field-independent electron sheet density. At a fixed electric field strength, a resonance-type non-monotonous dependence of the velocity on the electron density was found in the investigated range from I to 1.6 × 10
<sup>13</sup>
cm
<sup>-2</sup>
. When the electric field increased from 20 kV/cm to 80 kV/cm, the peak velocity increased from ˜1.1 to 2.3 × 10
<sup>7</sup>
cm/s, and the position of the resonance shifted from ˜1.1 × 10
<sup>13</sup>
cm
<sup>-2</sup>
to ˜1.2 × 10
<sup>13</sup>
cm
<sup>-2</sup>
, respectively. The resonance position correlates with that for the fastest decay of hot phonons known from independent experiment.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6254</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, Rapid res. letters : (Print)</s0>
</fA03>
<fA05>
<s2>5</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Hot-electron drift velocity and hot-phonon decay in AlInN/AlN/GaN</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ARDARAVICIUS (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIBERIS (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KIPRIJANOVIC (O.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MATULIONIS (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WU (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MORKOC (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Semiconductor Physics Institute of Center for Physical Science and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>65-67</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183L</s2>
<s5>354000194394220070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0238920</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CC</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. Rapid research letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A nanosecond-pulsed current-voltage technique was applied to study hot-electron transport along the two-dimensional electron gas channel confined at a nominally undoped AlInN/AlN/GaN heterointerface. Hot-electron drift velocity was deduced under the assumptions of uniform longitudinal electric field and field-independent electron sheet density. At a fixed electric field strength, a resonance-type non-monotonous dependence of the velocity on the electron density was found in the investigated range from I to 1.6 × 10
<sup>13</sup>
cm
<sup>-2</sup>
. When the electric field increased from 20 kV/cm to 80 kV/cm, the peak velocity increased from ˜1.1 to 2.3 × 10
<sup>7</sup>
cm/s, and the position of the resonance shifted from ˜1.1 × 10
<sup>13</sup>
cm
<sup>-2</sup>
to ˜1.2 × 10
<sup>13</sup>
cm
<sup>-2</sup>
, respectively. The resonance position correlates with that for the fastest decay of hot phonons known from independent experiment.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Electron chaud</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Hot electrons</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mobilité dérive</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Drift mobility</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Movilidad deriva</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Vitesse dérive</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Drift velocity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Courant impulsionnel</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Pulse current</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Corriente impulsional</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Champ uniforme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Uniform field</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Campo uniforme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Champ intense</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>High field</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Aluminium Indium Nitrure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Aluminium Indium Nitrides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nitrure d'aluminium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Aluminium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aluminio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gaz électron 2 dimensions</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Two-dimensional electron gas</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>19</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002D12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0238920
   |texte=   Hot-electron drift velocity and hot-phonon decay in AlInN/AlN/GaN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024